The Whole Town Is Talking: Using Abstraction, Intention and Composition to Quickly and Easily Create Large Numbers of Unique, Reactive Conversational Agents
It has been a goal of many a game to create a large city filled with people you can talk to. Not an inn or castle or a small town but a city. A big city filled with hundreds (or thousands, or more!) agents, each of which acts like an individual. But there’s a reason we fill shopping malls with zombies and countrysides with monsters but not cities with people – creating hundreds of people, each with their own personality, takes a lot of time. A cost-prohibitively long time. There won’t be games with large spaces truly filled with intelligent, conversational non-player characters (NPCs) until we find a way to create these agents more efficiently. Which brings us to the techniques introduced in this article. While we won’t try to tackle every problem and bottleneck that you’ll encounter in building a dialog system, hopefully the techniques presented here will impress you with just how much faster you can build large groups of agents.
Conversational Agents Today

The Need for Conversational Agents
Games are filled with characters that talk, although not all of it is conversational. In many first person shooters, enemies might bark orders and insult the player but you can't actually engage in a conversation with them. In those cases, talk is just ambient sound to make the game seem more realistic or fun. In many games, including some strategy games and most action, tactical and console RPGs, characters launch into monologues about how goatmen have invaded their farm or how they forgot their wrench in a rat-filled basement, but these aren’t really conversations – the characters are simply giving you quests and then staying out of your way so that you can go out and enjoy the combat. In these games, the NPCs (non-player characters) have relatively shallow and unimportant personalities. There are many (mostly Japanese) console RPGs such as The World Ends With You, Disgaea and Final Fantasy where NPC personalities are a core part of the experience and the story is told through “dialog” but it’s still not a conversation – the player watches people talk but can't choose what to say.

Conversations are much more important in traditional RPGs and adventure games. Dialog varies from the "select a topic" approach used in the Elder Scroll games (where one of the plots involves talking to people to find a thief and then convincing the thief to give the item back to the woman he stole it from) to the deep conversational trees of the original Fallout to the multi-way conversations of Planescape: Torment to the jury trials in Jade Empire. NPCs in these games are normally more complex than NPCs in other games. They might refuse to discuss a given topic with someone they don't know, ignore someone they previously argued with, insult someone from a rival group or yell at someone trying to strike up a conversation in the ladies bathroom. Conversations can lead characters to give up their evil plans, join the player's team or reveal the secret of their miniature giant space hamster.
Typical Methods for Building Conversational Agents

There are a few ways to make conversational agents, one of the more common (and painful) ways being to build them manually in script (if (1==option) bobDialog42() else…). An easier approach is to use a dialog editor to build a tree, where one node is what the NPC says, the nodes under that are things the player can say in response, the nodes under those are the NPC's response, etc. Each node typically contains the exact text the agent will say. You say "Do you like football?" and the NPC replies "Sure, who doesn't?". An NPC might have several responses based on whether they like you, have fulfilled a quest for them, are at a bar, etc. In Neverwinter Nights, this is done by calling the TextAppearsWhen script and in the Elder Scrolls editors (including Fallout 3's G.E.C.K editor) by checking the Conditions field, but the idea is the same - for every possible dialog option, the designer writes the input text (player choice), the output text (from the NPC) and for each possible output writes a script (either by hand in NWN or using a spreadsheet-like tool in Elder Scrolls) to determine whether that particular output should be used (if not, the game checks the next output in the list). The results can be very good but it takes a lot of time, thought and planning to get build.
The Scalability Problem
Let’s start with a positive – the functionality of the current techniques is essentially perfect. You can create any kind of dialog you want. If you want an NPC’s response to change based on the player’s shoes, intelligence, the last enemy they fought, the health of the NPC’s dog and the phase of the moon, you can do that. The problem is that it’s going to take you a long time.
Which isn’t the only problem. Because of the sheer volume of data, designers face the requirements gathering problem – you covered a lot of the possible variable combinations but did you handle all of them? In Fallout, NPCs asked about quests that have long since been completed. In Baldur’s Gate NPCs talked to invisible players without noticing that they couldn’t see them. In Mass Effect, the person sitting next to you will calmly inform you that they’ve picked up a communications signal right rather than ask why you’ve just driven off a bridge into a bottomless chasm. In Oblivion, NPCs react to stolen goods and drawn weapons but don’t notice when you follow them to dinner, jump on their table and kick over their food. In Neverwinter Nights, you can rescue a girl from a giant, go to the girl’s farm, kill her family then talk to her and she’ll tell you that she can’t thank you enough and asks that you visit them again.
Finding and correcting problems like this isn’t hard, it just takes time. How much time? To build a professional dialog, you not only have to decide which topics an agent can discuss, the words to use and the flow of the conversation, you need to think about all the factors (NPC personality, NPC culture, NPC state, world state, player state, conversational history, history with player, etc.) that should affect a conversation and make sure the NPC reacts appropriately. For one of the games I worked on last year, creating a dialog tree for a standard NPC took two to three weeks. Even then, the agent had the standard lapses in awareness and limited conversational ability that you find in any game. That particular game was a bit more complex than most but creating a decent conversational agent in any game is still measured in days and weeks, not minutes or hours.
The required effort influences how games are made. Consider this optimistic scenario – a designer can make a standard conversational NPC in one week. If the designer has nothing else to do, they can make ~50 NPCs in one year, albeit NPCs with limited conversational ability and limited situational awareness. Given that most games take several years and have several designers, this doesn’t seem bad until you consider that designers have quite a few other jobs. They need to design the game, create characters, build scenarios, play test design ideas, fix bugs (including many that will show up in dialogs) and possibly design large worlds which will hopefully be populated by hundreds of NPCs (keep in mind that if there are just 10 levels in the game, 100 NPCs translates to only 10 NPCs per level). As a result, time and money force those worlds to be filled with a handful of high quality NPCs (those that drive the plot) and dozens to hundreds of generic NPCs with no or almost no conversational abilities at all. For the game I worked on (a dialog-heavy multiplayer RPG), we needed to populate an entire city with people the players could talk to, from shop owners, doctors, leaders and children to angry mobs, religious leaders, terrorists and middle management. Each needed to behave realistically, taking into account their occupation, personality, culture and history with the players. As mentioned before, while it was technically possible to build the game with the current generation of tools, it was not economically possible – populating a city would make the game cost more, in time and money, than it could reasonably expect to make.
Unique Personalities and Other Things We Might Want
Our primary goal is to reduce the time it takes to create a conversational agent. The associated goal is to reduce the cost to create a single agent, allowing us to reduce the cost of making the game or create significantly more agents for the same amount of money (this article focuses on the latter).

We’ve already said that it would be nice if agents had greater conversational breadth (i.e., they could talk about more topics) and had more situational awareness, which in our case means their responses take into account factors such as their feelings towards the player, reflects the role the agent is in such as doctor or policeman and takes into account the cultural beliefs of the agent.

Another desirable trait is realistic uniqueness – characters in the game are roughly as diverse as people in the real world. Which highlights the problems of a common technique – make a few high quality NPCs (or dialog trees) and clone them. Using templates ("Hi, my name is %this.name, I live here in %this.city"), you could fill a world with hundreds of agents that knew some basic information about themselves but who all acted the same (or behaved like one of a handful of personality types). What we want are people who are realistically unique - based on who they are, two agents will give different answers when it makes sense and the same answer when it makes sense. For example, consider the case of a store owner, doctor and head of a hospital. If you ask them whether they like football, all three might say yes but if you ask how the medical situation in town is, the store owner might not know, the doctor might complain that they need more resources and the hospital head might lie and say everything is fine to protect the reputation of the hospital.

Another desirable feature, and one many games already have, is for the player to be able to change an agent's attitude and behavior towards them. Scenarios often require the player to earn the trust of an NPC. Likewise, bad behavior on the player's part should have consequences. Being able to win an agent’s trust is often the key to a mission and being able to make someone hopping mad is simply fun.

Culture describes how a group of people behave in certain circumstances. For example, it might be considered rude to ask an Afghani man about his wife, refuse a cup of tea in Iraq or ask a first level character about their flying mount. If you’re dealing with a large number of cultures (groups, roles, character types, etc.), the sheer volume of dialog data makes it hard to verify that agents behave consistently or behave the way the lead designer requested. For serious games, where the behavior often has to be evaluated by an educational expert and/or people from the culture being modeled, unless those people are also game programmers, this is a serious problem. Format is also a problem. All of the behavioral information can be captured in the standard script and tree structure of most dialog systems but if the knowledge is explicit (say, a spreadsheet that focuses on behavior rather than wording), it's easier for an expert to review (and author) the information. It's much harder to bring in a group of people from that culture and ask them to review the information if the information is scattered across hundreds of script files. So another desirable feature is the ability to explicitly describe a culture.
A benefit of an explicit cultural representation is that it allows another desirable feature, plug-and-play cultures. If the culture of the NPCs could be swapped out with other cultures, making a new city filled with conversational agents would be as easy as cloning an existing city and swapping the culture, which meets both the goal of being fast (and cheap) and the goal of the NPCs being realistically different.

Other features we might want in a dialog system include being easy (an easy to understand workflow not requiring a Ph.D. to use), being data driven in a way that makes it easy to create easy-to-use tools and being easy to write unit tests for.
A final thing is something we don’t want – the tool should not preclude a designer from being able to do things they can do now. An example is a tool that uses psychological data to generate realistic behavior but doesn’t allow the designer to override that behavior. While realism is often nice, it is more important that the designer be able to achieve the behavior they want. In entertainment games, realism must sometimes be sacrificed to fun or moving the plot along. In educational games, characters must sometimes do things to further the educational goal, such as a character correcting, rather than overlooking, an error or leading them to the correct behavior rather than harshly punishing the player.
What We Won’t Cover
It likely comes as no surprise that an article of this length will not cover every aspect of conversational agents. The focus of this article is on intention planning, which means deciding how you want to respond to a topic. We’ll use topics, concept trees, response types, trust levels, rapport modifiers, temperament stats, explicitly modeled cultural groups, sets of sparse culture wrappers and a bit of memory to help decide when we should answer a question, feign ignorance or insult the speaker’s mother.

What this article doesn’t cover is realization, the actual words that come out of the NPC’s mouth. In the old days, this was a simple problem – if the designer decides the NPC should insult the player, the response type Insult would map to one or more insults. If the NPC’s intent is Answer, the response type and topic can be used to look up a specific answer, which might be specific to that character or used by the entire world. Using the techniques presented here, if the designer decides halfway through the project that all 300 guards in the game need to be able to discuss bunnies or Pre-Raphaelite poetry with complete strangers (but still act stuffy around people they actively dislike), the change can be made in a few minutes or less.
Being able to add entirely new responses or whole topics to hundreds of NPCs in a matter of minutes is a nice feature and offers all sorts of dreams of large, expansive dialog-filled worlds. Unfortunately, these days, things are a little more difficult. Most high end games now use voice actors, meaning each statement an NPC can make must be recorded by several different voice actors in a variety of languages. Recording dialog is a slow and expensive process, plus the results take up quite a bit of disk space (more an issue for downloadable games than disc-based ones). Voice synthesis programs exist but are not yet good enough to be used in a high-end game.
Voice recording, rather than designer creativity or scripting effort to predict situations and manage dozens of variables, then, becomes the bottleneck, and it’s not one this particular article solves. However, even using a limited set of responses, the techniques presented here can help you more intelligently (and quickly) use the responses you do have.
Overview

The goal of this paper is to describe a way to scale up how one authors conversational agents. Current systems typically use hard-coded input-output mappings annotated with gateway scripts to decide which of the hard-coded responses to use. The system described here uses a variety of techniques but at the core, it tries to break the hard-coded links and replace them with abstractions. Rather than linking the player's input directly to the NPC's output, we use the player's input to determine the NPC's intention and then use the intention to select the NPC's behavior.

All inputs are mapped to a Topic. The Topic is checked against the NPC's CulturalGroup and current level of Trust towards the player to determine a ResponseType. Topics belong to a Topic Hierarchy, so if there is no match on the Topic, the system moves up a level and checks for a ResponseType to the parent Topic.

CulturalGroup is a sparse set of {Trust-Topic-ResponseType} mappings. Culture represents not just nationality but any group membership that affects how the agent will respond to a topic. An agent can (and almost certainly will) belong to multiple groups. Groups are prioritized and conflicts are resolved by first-chance handling. Agents are built using design by composition and design by exception strategies.
	Name:
	Nori
	Anwar
	Zuhair
	Scott
	Shakir
	Suha
	Halema

	Bio:
	Iraqi Man
	Policeman
	Policeman
	U.S. Soldier
	Insurgent
	Doctor
	Doctor

	Roles:
	Iraqi
	Policeman
	Zuhair
	Scott
	SoccerFan
	AidWorker
	GovRep

	
	SoccerFan
	GovRep
	GovRep
	Soldier
	Insurgent
	GovRep
	AidWorker

	
	Person
	Iraqi
	Insurgent
	US Citizen
	Iraqi
	IraqiFemale
	IraqiFemale

	
	
	Person
	Policeman
	Person
	Person
	Iraqi
	Iraqi

	
	
	
	Person
	
	
	Person
	Person

	Trust:
	0
	0
	-2
	2
	-6
	0
	0

Table 1. NPCs in an Iraqi city.
Throughout this article, we’ll use the example of a U.S. soldier (the player) in an Iraqi city. Table 1 lists seven NPCs the player might interact with – a typical civilian, a police man, a policeman secretly working for the insurgents, another U.S. soldier, an insurgent (although the player doesn’t know this) and two doctors.
Intention Modeling

Imagine a game in which there are 100 NPCs and the player has just insulted all of them. How will they react? Most will return the insult in a dozen different ways, based on their personality, intelligent, culture and preferred insult. Many will ignore the player. A few will attack. There are potentially 100 actual actions or phrases that might be used but (in our example) there are only three intentions (insult, ignore, attack). In most games, the player's action (the input) is hard-coded directly to the NPC's behavior (the output). The result is that the designer must write thousands of pairings such as {input:Hear("Do you like films about gladiators?"), output:Say("Get away from me, weirdo.")}. Much of this work is redundant - the same output is used for multiple inputs and the same pairings are used in dozens of NPCs. If it is decided that this behavior is no longer desired (say, if designers decide late in the process that elves, unlike dwarves and humans, never insult others), the dialog pairings must be tracked down across dozens or hundreds of scripts or dialog files and changed.

Doing duplicate work is not only inefficient and hard to maintain, it's not fun. To make the designer's life easier, we'll have them map inputs to intentions (a much easier task) and separately map intentions to behaviors.

Topics, Response Types and Trust
In our approach, for a given culture (which we'll discuss a little later), a Topic and Trust level are used to select ResponseType. Topic is the subject the player is asking about (swords, rumors, dragons, etc.). In this article, we'll assume that Topic is the only input. While this is sufficient for most current video games, more demanding games will likely use a more complex input consisting of an action (asking a question, demanding, greeting, complimenting, insulting, etc.), a topic and possibly some meta-data (vigor, politeness, etc.). The type of input is irrelevant to the rest of the system so we'll keep things simple and assume Topic is the sole input.

ResponseType represents our intention. Possible values include Answer (give the player the information they're looking for, if possible), Refuse, Evade, ChangeTopic, VagueAnswer, Lie, Ignore, Insult, Threaten, Correct (if the player has made a mistake in what they asked for; this is more useful in educational games), PositiveLie (say something is great, whether it is or not), NegativeLie and Custom (e.g., attack). More complicated (and academically respectable) schemes exist, but the above works well for our purposes.
Trust is the amount of trust the NPC has in the player. It's what ties the Topic to the ResponseType for that cultural group. This attribute does not have to be Trust - it could be rapport or some combination of other attributes, although trust as a single value works well in most instances. The important thing is that there is an attitudinal value that unambiguously ties an input to a ResponseType.

Using the example in Table 1, let's assume that the player has insulted Anwar the policeman. Let’s measure trust from -10 (distrust) to 10 (full trust). Topic=insult, Culture=Police and Trust=0. We have the rules (evaluated in order)

 {Trust >= 5, Ignore}
 {Trust >= 0, Insult}
 {Trust >= -7, Threaten}
 {Trust < -7, Custom:Attack}
When the player insults Anwar, Anwar will decide to insult the player. Assuming an insult lowers Trust by 1, if the player insults Anwar again, Anwar will threaten him. If the player keeps it up, Anwar will eventually attack.

Knowing that Bob will insult the player does not automatically determine what Bob actually does. The behavior generation system might be as simple as mapping ResponseType=Insult to Say("Oh yeah, your momma."). The intent is mapped at the group level (all policemen) but the behavior could be different for each individual policeman. Each NPC could have their own favorite insult. Insults could be chosen based on Bob's intelligence. They could be based on the player's class or how they're dressed or where they are (sports arena, store, etc.). This decision is made independent of the intention system.

Separating intention from behavior has several important implications. First, separate designers can be assigned to intent (say, someone familiar with personality or social psychology) and realization (e.g., a writer). Second, because it's a smaller set of data and explicit in its goals, it is easier for one person to view and correct the data (important when striving for consistency across agents and designers). Third, the smaller set of options (which presumably will be chosen from a list rather than entered as free text) means the intent portion can be built faster and more easily. And by removing duplicate data (in the behavior system, you only have to map behaviors to a small set of intents, not the much larger set of inputs), it should reduce the overall amount of work. Fourth, it makes it easier for designers to tweak dialog later in the development process without editing (and possibly adding bugs to) individual NPC dialog trees. Fifth, having a separate intention layer makes it easier to write unit tests, in part because there's less data to test and in part because the tests aren't dependent on free text (important both because text is often changed and because of internationalization). Sixth, the explicit ResponseTypes and Trust levels helps designers remember which conditions they need to handle (note that this is not required: one can create a group Person that returns Answer for all topics at all Trust levels)

	Where is the market?
	lying

	Name:
	Nori
	Anwar
	Zuhair
	Scott
	Shakir
	Suha
	Halema

	Say:
	Left
	Left
	Right
	Left
	Right
	Left
	Left

	Intent:
	Answer
	Answer
	Lie
	Answer
	Lie
	Answer
	Answer

	Role:
	Iraqi
	Iraqi
	Iraqi
	USCitizen
	Insurgent
	Iraqi
	Iraqi

Table 2. What an NPC says depends on their intention.

A final, and important, reason why separating intention from behavior is important is because it allows for design by composition, as seen in the next section.
Concept Hierarchies

Although not a focus of this article, it should be mentioned that the topics used in the implemented system belonged to a topic hierarchy. If the player asked about murders and the NPC's group didn't have an entry for Murder, the system would check the parent topic (say, Problems). If that was missing, it would check the next level until it had reached the root topic. There are several advantages to this but two are worth mentioning. First, by placing a ResponseType on the root node, the agent has a default answer to anything the player asks. This helps cover errors when a mapping has been forgotten (missing mappings is predominantly a problem for games that allow the player to enter their own question rather than select one from a list). Second, it allows a designer to add new topics through extension, which is normally lower risk than edits. If the designer decides that some characters need special behaviors when discussing Pre-Raphaelite poetry, they can add it to the topic hierarchy. The groups configured to discuss obscure Victorian poetry will do so and everyone else will respond to the general topic of poetry, writing or something more general.

It should also be noted that the {Topic-Trust-ResponseType} mappings do not have to be completely specified. An NPC can be setup to talk about local crime when Trust is eight or better and have no other mapping for that topic. If Trust was below that value, the system would then use the parent topic. This comes in handy when a person belongs to multiple groups, as described in the next section.
	Do you like football?
rapport building, concept abstraction

	Name:
	Nori
	Anwar
	Zuhair
	Scott
	Shakir
	Suha
	Halema

	Say:
	Yes
	Yes
	Yes
	No
	Maybe
	Not really
	Yes

	Intent:
	Answer
	Answer
	Answer
	Answer
	Evasive
	Answer
	Answer

	Role:
	SoccerFan
	Iraqi
	Iraqi
	USCitizen
	SoccerFan
	Iraqi
	Iraqi

	Topic:
	Football
	Sports
	Sports
	Sports
	Football
	Sports
	Sports

	Trust:
	+1
	+1
	+1
	+1
	+1
	+1
	+1

Table 3. Questions about football can be answered either as questions about Football or Sports.

Cultural Wrappers
When the designer specifies intent, they do so at the group level, not for individual NPCs. For historical reasons, we will refer to these groups as CulturalGroups. CulturalGroups can represent race, nationality, occupation, political affiliation or any group membership that affects how one reacts to something. Examples include Thai, Rural, Soldier, FootballFan, PunkRocker, AngryLoner and Parent. Designers can also use the cultural group concept to model personality traits such as Paranoid and Bully.

A cultural group contains one or more {Topic-Trust-ResponseType} mapping. These mappings are typically sparse - most doctors have a predictable reaction to medical questions but not to questions about books, movies or enchanted swords.

Agents belong to one or more groups. Typically, one of those groups will be Person and contain default mappings. Other groups specialize the agent. Some, such as Iraqi, will be fairly broad and dense, containing a lot of mappings, while others, such as FootballFan, will be small and focused. The agent can have an unlimited number of groups.

	Tell me about your spouse.
	

	Name:
	Nori
	Anwar
	Zuhair
	Scott
	Shakir
	Suha
	Halema

	Say:
	How rude!
	I refuse
	No
	Chevy’s nice
	You’re a pig!
	No
	No

	Intent:
	Refuse
	Refuse
	Refuse
	Answer
	Insult
	Refuse
	Refuse

	Role:
	Iraqi
	Iraqi
	Iraqi
	USCitizen
	Iraqi
	Iraqi
	Iraqi

	Topic:
	Spouse
	Spouse
	Spouse
	Spouse
	Spouse
	Spouse
	Spouse

	Trust:
	-1
	-1
	-1
	+1
	-1
	-1
	-1

Table 4. U.S. and Iraqi cultures differ in their willingness to discuss their spouse with a stranger.
When designing agents, two design principles are used: design by composition and design by exception.

Design by composition says that the designer should build the agent by selecting pieces (cultural groups) rather than writing the agent from scratch. The process is simple and fast - agent A is a Doctor, GovernmentRepresentative, Iraqi, IraqiFemale, Person and agent B is a GovernmentRepresentative, Insurgent, Policeman, Iraqi, Person. It takes only a few seconds to select the groups from a list and assigning the groups fully specifies how the agents will react to any dialog option in the game (note that, if per-agent behavior is used, that work will still need to be done, although as mentioned before, it should be less work than in traditional system). Design by composition speeds up the agent authoring process.

Design by exception speeds up the group authoring process. Following the principle of design by exception, default values should be setup in the base group (in our example, Person) and only those values that differ from the default should be placed in new groups. For example, you could have the group LittleGirl love to talk to complete strangers about any type of animal, the group DemonEnthusiast love to discuss demons and the group RabbitPhobe be to terrified to discuss rabbits with anyone but their closest friends. Assigning those three groups to an agent produces an agent that will gladly talk about animals and demons yet refuse to discuss bunnies. The group RabbitPhobe does not contain mappings for any Topic other than Rabbit, making it fast to create, and the designer is not forced to create hundreds of combination groups such as PeopleWhoLoveAnimalsAndDemonsButNotRabbits.

Although it won't be frequent, conflicts between CulturalGroups can occur. Consider a doctor that runs a government clinic in a war zone. Although the clinic is trying its best, there are still rampant health problems in the area. If you ask the agent about the problems, the Doctor in her wants to complain that they aren't doing enough while the GovernmentRepresentative in her wants to say that the clinic is doing just fine.

The dialog system we describe here works more generally for any problem of determining an agent's reaction to an event. How one handles the cultural group conflicts depends on the domain. For the dialog system, we decided to use a first-chance event handler with a prioritized group list (referred to as Cultural Wrappers). When setting up the agent, the designer must select the order of the groups. In Table 1, Suha has Doctor prioritized over GovernmentRepresentative while Halema has the same groups but in a different order. When asked about problems (Table 5), Suha complains about health care while Halema says there are no problems.

	Are there any problems here?
	

	Name:
	Nori
	Anwar
	Zuhair
	Scott
	Shakir
	Suha
	Halema

	Say:
	Yes
	Crime
	It’s very safe
	I don’t know
	You!
	Healthcare
	No

	Intent:
	Answer
	Answer
	Deny
	Answer
	Insult
	Answer
	Deny

	Role:
	Iraqi
	Iraqi
	GovRep
	USCitizen
	Insurgent
	Iraqi
	GovRep

Table 5. An NPC’s answer is based on the order (prioritization) of their groups.

In a very small number of cases, there is no acceptable ordering of groups - sometimes group A supersedes group B and other times B supersedes A. As an example, in Table 1, Zuhair is both a policeman and (secretly) an insurgent. He wants to help the terrorists but not at the risk of blowing his cover. They might voice support for the terrorists around people they trust (like a terrorist would) but be polite to the player (like a policeman would). In these instances, a simple solution is to create a new group that contains only those Topics and Trust levels needed to resolve conflicts. This new group might be an actual general-purpose group such as UndercoverInsurgent but it can also represent that specific individual (in this case, Zuhair). Individuals have their personal quirks that can’t be captured by any group, so modeling the things that are truly specific to an individual is OK. But the "individual group" should only contain the exceptions - unless the agent is truly, eccentrically unique, most of their responses should be specified in the more general groups.

Earlier it was mentioned that Topics belong to a topic hierarchy. When determining the agent's intent, if a match on the Topic isn't found, the parent Topic is used, moving up the tree until a match is found. When multiple groups are used, preference is given to Topic specificity. Consider the Topic TableTennis, child of Sports, and the ordered group list [USCitizen, PingPongFan]. USCitizen does not have a mapping for TableTennis but does for Sports while PingPongFan matches on TableTennis. Assuming a trust level of 0, the program first checks for a match on {USCitizen, TableTennis, 0} and fails to find a match. It then checks {PingPongFan, TableTennis, 0}, where it finds a match. Had it failed, it would have then checked {USCitizen, Sports, 0} and then {PingPongFan, Sports, 0}. This gives greater freedom in arranging groups and allows for a greater number of groups to be used. If the system moved up the topic heirarchy before checking the next group, any group with a value high in the tree (for example, at the root node, which matches everything) would prevent any other group from having an influence.
Realization, Behavior Generation, Trust Modifiers, Circumstantial Modifiers and Creating Unique Individuals

Each combination (and ordering) of groups results in an individual that is unique. It does not mean that they will behave differently than every other agent under all circumstances at all times. We could design them to do so, but the agents wouldn't appear realistic, they'd appear insane. It doesn't matter whether someone loves kittens, is a doctor or grew up in a small town, if you ask them whether a particular neighborhood is dangerous or whether a given restaurant is good, there are only a limited number of responses you should get. Responding to the question "where is the train station" by juggling cats might be unique but it isn't helpful. That said, there's nothing preventing the designer from adding that reaction.

The number of unique individuals you can create by combining groups grows quickly with the number of groups. With three groups, 15 unique individuals can be made. With five groups, the number is 325. With 10 groups, the number is 9,864,100, a number larger than most cities in the world (add one group and you can cover all cities and most countries).

Assigning and ordering groups is not the only way to create unique NPCs. Intent can be tweaked at the NPC-level using the TrustModifier property. This represents how trusting someone is and how quick they are to change their trust level. It is multiplied against Trust to produce a modified trust score used in Trust checks. The default TrustModifier is 1. An agent with a TrustModifier of 1.5 is 50% more trusting than normal - the agent needs only a Trust of four to trigger responses other agents with the same group list require a six for.

Although we have not yet implemented this, circumstantial modifiers can be used to modify Trust scores. For example, if the agent has been arrested or has a gun pointed at him, the threshold for giving an answer could be lowered. It seems likely that this should vary somehow at the NPC level (perhaps by a willpower property).

Although beyond the scope of this article, uniqueness can also be created in the behavior generation system. A single {Topic, ResponseType} pairing (where Topic can be a wildcard when topic is irrelevant, such as when insulting or ignoring the player) can map to a set of realizations, one of which is selected at random (preferably using an intelligent random system that filters out long repeated sequence). Behaviors can also be chosen based on attributes of the agent. For example, if the ResponseType was Compliment, an agent with a high intelligence or charisma might say something clever while someone with low intelligence might stumble badly and say something offensive.
Conclusion

One of the biggest obstacles to creating games filled with hundreds of intelligent, conversational agents is the sheer amount of work (and therefore cost) required to create them. It’s not that it’s hard work (although designing interesting characters and dialog is hard work too), it’s that any kind of work done several hundred times is a lot of work. And sometimes, quantity is as important as quality – you can’t make a living, breathing, realistic city with just three characters. So one of the keys to improving AI is to improve the “authoring scalability” of AI – there needs to be processes and tools to make it easier to populate virtual worlds. Hopefully the ideas presented in this article will be a big step towards helping you fill your own worlds with intelligent, interesting, unique people to talk to.

